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Abstract 

Financial fraud detection presents significant challenges due to the complex, dynamic, and multi-

level nature of fraudulent activities in modern financial systems. This paper proposes a Dynamic 

Graph Neural Network (DGNN) framework that captures both temporal dynamics and structural 

patterns across transaction, account, and community levels for comprehensive fraud detection. The 

architecture integrates a multi-level financial network construction method with a temporal-

structural feature extraction module and a hierarchical detection framework. The temporal-

structural approach employs graph attention networks for capturing spatial relationships between 

financial entities while utilizing temporal convolution networks to model evolving patterns. 

Bidirectional message passing enables information flow between different network levels, 

allowing the detection of sophisticated fraud schemes that operate across multiple organizational 

scales. Extensive experiments on three real-world financial datasets (CCFraud, MPFraud, and 

BankNet) demonstrate that our approach consistently outperforms state-of-the-art methods, 

achieving average improvements of 1.4%, 5.7%, and 5.5% in AUC-ROC, AUC-PR, and F1-score 

respectively. Ablation studies confirm the significance of each component in the architecture, with 

the combination of temporal and structural features providing substantial performance gains. The 

model shows particular strength in detecting complex fraud patterns involving multiple accounts 

and extending over longer time periods, validating the effectiveness of our multi-level approach 

for financial fraud detection in dynamic environments. 

Keywords: Graph Neural Networks, Financial Fraud Detection, Temporal-Structural Analysis, 

Multi-Level Architecture 
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Introduction 

Research Background and Motivation 

Financial fraud has emerged as a critical concern for global financial institutions, resulting in 

substantial economic losses estimated at $42 billion annually. Traditional fraud detection systems 

rely on rule-based approaches and conventional machine learning techniques, which often fail to 

capture the complex interconnections between entities in financial networks[1]. Graph-based 

representations provide a natural framework for modeling financial transactions, where nodes 

represent entities such as accounts, customers, or merchants, and edges represent relationships or 

transactions between them. The inherent relational structure of financial data makes Graph Neural 

Networks (GNNs) particularly suitable for fraud detection tasks. 

Recent advances in deep learning have enabled significant progress in graph representation 

learning. GNNs have demonstrated exceptional capabilities in learning node embeddings that 

encapsulate both feature information and graph topology[2]. While static GNNs have shown 

promising results in various domains, financial fraud exhibits complex temporal-structural patterns 

that evolve over time. Fraudsters continuously adapt their techniques to evade detection systems, 

creating sophisticated multi-level schemes that operate across different scales of financial 

networks[3]. This dynamic nature necessitates advanced models capable of capturing temporal 

dependencies and structural patterns simultaneously. 

Challenges in Financial Fraud Detection 

Detecting financial fraud presents several unique challenges that limit the effectiveness of 

conventional approaches. Class imbalance constitutes a fundamental issue, as fraudulent 

transactions typically represent less than 0.1% of all transactions, making model training 

particularly difficult. The temporal evolution of fraud patterns requires models capable of adapting 

to emerging techniques while maintaining high detection accuracy for known patterns. 

Multi-level fraud operations add another layer of complexity, as fraudsters coordinate activities 

across transaction, account, and network levels. Individual transactions might appear legitimate 

when examined in isolation, but reveal suspicious patterns when analyzed within their temporal 

and structural context. Graph-based anomaly detection methods must address these multi-level 

dynamics while processing massive volumes of real-time transactions. 

The high-dimensional nature of financial data presents computational challenges for traditional 

graph algorithms, which often scale poorly with network size. Financial institutions must balance 

detection accuracy with computational efficiency, maintaining real-time performance while 

processing millions of transactions daily[4]. Privacy concerns and regulatory requirements further 

constrain the development and deployment of fraud detection systems. 
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Research Contributions 

This paper introduces a dynamic graph neural network framework for multi-level financial fraud 

detection that addresses the aforementioned challenges through several innovations. The proposed 

architecture integrates temporal graph convolution networks with structural attention mechanisms, 

enabling effective learning of time-evolving node representations[5]. The multi-level detection 

framework operates simultaneously across transaction, account, and community levels, capturing 

fraud patterns that manifest at different granularities. 

The temporal-structural approach incorporates adaptive time windows that adjust based on 

transaction volumes and network dynamics, optimizing the model's sensitivity to both rapid and 

gradual pattern changes. A hierarchical message-passing mechanism propagates information 

across levels while preserving both local and global graph properties. The fraud detection system 

employs a novel loss function designed specifically for imbalanced classification, improving 

performance on minority fraud cases without sacrificing overall accuracy. 

Comprehensive experiments on real-world financial transaction datasets demonstrate significant 

performance improvements over state-of-the-art methods, particularly for complex fraud schemes 

involving multiple entities and extended time periods[6][7]. 

Related Work 

Traditional Financial Fraud Detection Methods 

Traditional approaches to financial fraud detection predominantly rely on rule-based systems, 

statistical methods, and conventional machine learning techniques. Rule-based systems implement 

predefined heuristics established by domain experts to flag suspicious activities, using thresholds 

for transaction amounts, frequency, and unusual patterns[8]. While these systems offer 

interpretability, they lack adaptability to new fraud patterns and require constant manual updates. 

Statistical methods such as logistic regression, decision trees, and random forests have been widely 

applied for fraud detection. These methods typically extract statistical features from transaction 

data, including transaction amount, time, location, and merchant category. Supervised learning 

approaches require labeled datasets, which are often limited in the financial fraud domain due to 

data privacy constraints and the rarity of confirmed fraud cases[9]. Unsupervised methods like 

clustering and outlier detection identify anomalous patterns without labeled data, though they often 

produce high false positive rates. Recent advancements in ensemble methods combine multiple 

models to improve detection accuracy, with gradient boosting machines demonstrating particularly 

strong performance on tabular financial data[10]. Deep learning models, including autoencoders 

and deep belief networks, have been employed to learn complex feature representations from high-

dimensional financial data[11]. These approaches, while powerful, typically treat transactions as 

independent events, failing to capture the relational aspects of financial activities. 
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Graph Neural Networks in Anomaly Detection 

Graph Neural Networks have revolutionized anomaly detection by explicitly modeling the 

relational structure of data. In graph-based anomaly detection, the goal is to identify nodes, edges, 

or subgraphs that deviate significantly from expected patterns. GNNs learn node embeddings 

through message-passing mechanisms, where each node aggregates information from its neighbors 

to update its representation. These embeddings capture both node attributes and topological 

information, enabling more comprehensive anomaly detection compared to traditional 

approaches[12]. Graph Convolutional Networks (GCNs) generalize convolutional operations to 

non-Euclidean domains by performing spectral convolutions on graphs[13]. GraphSAGE extends 

this approach through neighborhood sampling and aggregation strategies, improving scalability 

for large networks. Graph Attention Networks (GATs) incorporate attention mechanisms to weight 

neighbor contributions during aggregation, allowing the model to focus on more relevant 

connections. GNN-based anomaly detection methods typically follow two approaches: supervised 

approaches that learn to directly classify nodes or edges as anomalous, and unsupervised 

approaches that learn normal patterns and identify deviations[14]. Semi-supervised approaches 

leverage limited labeled data alongside graph structure to improve detection performance. Recent 

advances include adversarial approaches where generator-discriminator architectures learn to 

distinguish between normal and anomalous graph patterns[15]. 

Temporal Graph Neural Networks for Financial Data 

Temporal Graph Neural Networks extend standard GNNs to capture dynamic relationships in 

time-evolving graphs, making them particularly suitable for financial data. Financial networks 

exhibit complex temporal dependencies, with transaction patterns varying across different time 

scales, from intraday fluctuations to seasonal trends[16]. Discrete-time dynamic graph models 

represent temporal graphs as sequences of static graph snapshots, applying GNN operations to 

each snapshot independently before integrating temporal information. Continuous-time dynamic 

graph models directly incorporate time information into the message-passing mechanism, enabling 

more precise modeling of asynchronous events like financial transactions. Recurrent Graph Neural 

Networks combine GNN layers with recurrent architectures like LSTM or GRU to capture 

sequential dependencies in graph evolution[17]. Attention-based temporal GNNs employ temporal 

attention mechanisms to identify relevant historical patterns at different time scales. In financial 

fraud detection, temporal GNNs have been applied to identify suspicious transaction sequences, 

unusual account behavior patterns, and coordinated fraud rings[18]. These models can detect 

behavioral changes that indicate account takeover or identity theft by tracking deviations from 

established temporal patterns. Multi-scale temporal GNNs process information at various time 

granularities simultaneously, capturing both immediate anomalies and gradual pattern shifts in 

financial activities[19]. Recent approaches incorporate causal inference techniques to distinguish 

between genuine behavioral changes and fraudulent activities in temporal financial graphs. 
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Dynamic Graph Neural Network Architecture 

Multi-level Financial Network Graph Construction 

The proposed Dynamic Graph Neural Network (DGNN) architecture operates on a multi-level 

financial network representation that captures interactions across three distinct organizational 

levels: transaction level, account level, and community level[20]. This hierarchical structure enables 

comprehensive fraud detection by modeling both micro-patterns in individual transactions and 

macro-patterns in account communities. The financial network graph G = (V, E, A, T) consists of 

a node set V, an edge set E, an attribute tensor A, and a temporal dimension T, with each level 

featuring distinct node and edge semantics[21]. 

At the transaction level, nodes represent individual financial transactions with edges connecting 

sequential transactions from the same account. Each transaction node v_i ∈ V_t carries a feature 

vector x_i containing transaction amount, timestamp, merchant category code, and geographical 

coordinates[22]. At the account level, nodes represent financial accounts (customers, merchants, or 

institutions), with edges representing transaction flows between accounts. Account nodes v_j ∈ 

V_a maintain a feature vector y_j comprising account age, average balance, transaction frequency, 

and behavioral patterns. The community level models clusters of accounts with similar behavioral 

patterns or geographical proximity, where nodes v_k ∈ V_c represent communities and edges 

represent inter-community transaction flows[22]. Table 1 summarizes the node types across 

different levels with their associated features. 
Table 1: Node Types and Features at Different Graph Levels 

Level Node Type 
Feature 

Dimensionality 
Primary Features 

Transaction 
Transaction 

Event 
24 

Amount, Timestamp, 

MCC, Location, Device ID 

Account 
Customer 

Account 
18 

Age, Balance, Transaction 

History, Behavioral Patterns 

Account 
Merchant 

Account 
22 

Business Category, 

Transaction Volume, Risk 

Score 

Community 
Geographic 

Community 
15 

Region, Demographic 

Profile, Economic Indicators 

Community 
Behavioral 

Community 
12 

Shared Activity Patterns, 

Temporal Rhythms 
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The multi-level graph construction process involves three key steps: entity extraction, relationship 

mapping, and temporal alignment. Table 2 presents the relationship types that form edges at 

different levels of the graph. 
Table 2: Edge Types and Properties in the Multi-level Network 

Source 

Node 

Destinatio

n Node 
Edge Type Properties Weight Calculation 

Transactio

n 

Transactio

n 
Sequential 

Temporal 

gap 
exp(-Δt/τ) 

Account Account Transfer 
Volume, 

frequency 
log(1 + transfer_count) 

Account Merchant Purchase 
Recurrence

, amount 

normalized_amount * 

recurrence 

Account 
Communit

y 

Membershi

p 

Engageme

nt level 
participation_ratio 

Communit

y 

Communit

y 
Interaction 

Flow 

intensity 

normalized_flow_volu

me 

Figure 1 illustrates the multi-level graph construction process, demonstrating how information 

flows between different levels of the network. 

 
Figure 1: Multi-level Financial Network Construction 
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The figure presents a three-tier hierarchical representation of financial data, with transaction nodes 

at the bottom layer (colored in blue), account nodes in the middle layer (colored in green), and 

community nodes at the top layer (colored in red). Vertical connections between layers represent 

cross-level relationships, while horizontal connections represent intra-level relationships. The 

visualization includes a zoomed inset showing the detailed connection patterns between 

transaction nodes and their corresponding account nodes, with edge weights visualized through 

varying line thicknesses. Temporal evolution is represented by a sequence of graph snapshots 

ordered from left to right, showing how community structures evolve over time. 

Temporal-Structural Feature Extraction 

The temporal-structural feature extraction module learns node representations that capture both 

the spatial structure of financial networks and their temporal evolution. For each node v_i at level 

l, the model computes a d-dimensional embedding vector h_i^l that encodes both structural and 

temporal characteristics. The feature extraction process employs a dual-stream architecture with 

separate modules for structural and temporal feature learning, which are subsequently integrated 

through a fusion mechanism[23]. 

The structural feature extractor utilizes a Graph Attention Network (GAT) with K attention heads, 

where each head computes attention coefficients α_ij^k according to Equation 1: 

α_ij^k = softmax_j(LeakyReLU(a^Τ[W^kh_i || W^kh_j]))    (1) 

where W^k ∈ ℝ^(d×F) is the input linear transformation's weight matrix, a ∈ ℝ^(2F) is the attention 

vector, and || denotes concatenation. The output of the attention layer is computed as in Equation 

2: 

h_i^' = σ(∑_k=1^K ∑_j∈N(i) α_ij^k W^k h_j)    (2) 

Table 3 presents the hyperparameters of the structural feature extraction component. 
Table 3: Structural Feature Extraction Hyperparameters 

Layer 
Output 

Dimension 

Attention 

Heads 
Activation 

Dropout 

Rate 

GAT Layer 

1 
64 8 ELU 0.2 

GAT Layer 

2 
128 8 ELU 0.2 

GAT Layer 

3 
256 8 ELU 0.3 

For temporal feature extraction, the model employs a temporal convolution network (TCN) that 

processes sequences of node features across multiple time windows. The TCN applies dilated 

causal convolutions to capture multi-scale temporal patterns while maintaining temporal causality. 

Table 4 shows the configuration of the temporal feature extraction module. 
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Table 4: Temporal Feature Extraction Parameters 

Parameter Transaction Level Account Level Community Level 

Sequence Length 48 24 12 

Time Granularity 1 hour 1 day 1 week 

Kernel Size 3 5 7 

Dilation Factors [1, 2, 4, 8] [1, 2, 4] [1, 2] 

Filters per Layer [64, 128, 256] [64, 128, 256] [64, 128, 256] 

Figure 2 illustrates the temporal-structural feature extraction process across the three network 

levels. 

 
Figure 2: Temporal-Structural Feature Extraction Architecture 

The figure depicts a complex dual-stream architecture with structural and temporal pathways. The 

structural pathway (top stream) shows three stacked GAT layers with multi-head attention 

visualization, represented by colored connection matrices that become progressively more refined 

from left to right. The temporal pathway (bottom stream) displays a series of dilated causal 

convolutions with receptive field sizes increasing from left to right, illustrated by filter patterns of 

increasing scope. The pathways merge at the right side through an attention-based fusion 

mechanism, visualized as a heatmap showing cross-modal attention weights. Different colors 

represent different network levels (blue for transaction, green for account, red for community), 

with darker shades indicating higher feature importance. 

Hierarchical Detection Framework 

The hierarchical detection framework integrates information across multiple network levels to 

identify fraudulent activities that manifest across different scales. The framework employs a 

bidirectional message-passing mechanism that propagates information both upward (from 

transaction to community) and downward (from community to transaction) to ensure coherent 

fraud detection across all levels[24]. 



Annal. App. Sci, 2024   

9 

The upward message-passing mechanism aggregates node embeddings from lower levels to inform 

higher-level representations. For each account node v_j, the model aggregates embeddings from 

its associated transaction nodes {v_i | (v_i, v_j) ∈ E} using an attention-weighted sum. Similarly, 

community-level embeddings are computed by aggregating account-level embeddings[25]. The 

downward message-passing refines lower-level representations using contextual information from 

higher levels, enabling transaction-level decisions to consider community-level patterns. 

The model employs level-specific classifiers trained to identify fraud at each level of the hierarchy. 

At the transaction level, the classifier f_t(h_i) produces a fraud probability for each transaction 

node. Account-level classification f_a(h_j) identifies potentially compromised accounts, while 

community-level classification f_c(h_k) detects suspicious communities that may represent 

coordinated fraud rings[26]. The final fraud prediction integrates decisions from all three levels 

using a hierarchical fusion mechanism. 
Table 5: Hierarchical Detection Components and Performance 

Detection Level Model Architecture Precision Recall F1 Score 

Transaction MLP (256-128-64-1) 0.782 0.835 0.807 

Account GRU (256-128-1) 0.814 0.793 0.803 

Community GCN (256-128-64-1) 0.837 0.761 0.797 

Integrated Hierarchical Fusion 0.856 0.842 0.849 

Figure 3 presents the complete architecture of the hierarchical detection framework with 

bidirectional message passing between levels. 

 

 
Figure 3: Hierarchical Fraud Detection Framework 
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The figure shows a three-tier pyramid structure representing the hierarchical detection framework. 

Each tier corresponds to a network level (transaction, account, community) and contains its own 

detection module visualization. Bidirectional arrows between tiers illustrate the message-passing 

mechanism, with upward arrows colored in green and downward arrows in purple. The width of 

arrows indicates the information flow volume. Insets around the main pyramid show detailed 

visualizations of each level's classifier architecture. The right side of the diagram features a 

decision fusion module that combines predictions from all levels, visualized as converging paths 

with varying weights indicated by line thickness. A color-coded performance heatmap appears at 

the bottom, showing detection performance across different fraud types and levels. 

Experimental Evaluation 

Datasets and Experimental Setup 

The performance of the proposed Dynamic Graph Neural Network was evaluated on three real-

world financial datasets: a credit card transaction dataset (CCFraud), a mobile payment transaction 

dataset (MPFraud), and a banking transaction network dataset (BankNet). These datasets represent 

diverse financial contexts with varying fraud patterns and network structures. The CCFraud dataset 

contains 2.84 million credit card transactions from 358,926 accounts over a 6-month period, with 

a fraud rate of 0.17%. The MPFraud dataset includes 4.76 million mobile payment transactions 

from 529,384 users and 48,715 merchants, with a fraud rate of 0.23%. The BankNet dataset 

comprises 1.52 million wire transfers and account activities from 142,587 accounts across 384 

banking institutions, with a fraud rate of 0.08%[27]. Table 6 summarizes the key statistics of these 

datasets. 
Table 6: Dataset Statistics and Characteristics 

Dataset 
 Transactio

ns 

Account

s 

Tim

e Span 

Frau

d Rate 

Graph 

Density 

Avg

. Degree 

CCFrau

d 

 
2,843,652 358,926 

6 

months 

0.17

% 

2.84×10

^-5 

8.4

2 

MPFrau

d 

 
4,762,589 578,099 

8 

months 

0.23

% 

1.95×10

^-5 

9.7

8 

BankNe

t 

 
1,524,376 142,587 

12 

months 

0.08

% 

4.27×10

^-5 

6.8

3 

The experimental setup involved data preprocessing, feature engineering, and model 

configuration. Transaction features included amount, timestamp, merchant category, location 

coordinates, and device identifiers. Account features comprised account age, average balance, 

transaction frequency, and behavioral patterns. The datasets were split chronologically with 70% 
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for training, 10% for validation, and 20% for testing to simulate real-world deployment 

scenarios[28]. Table 7 presents the model configuration and hyperparameters used in the 

experiments. 
Table 7: Model Configuration and Hyperparameters 

Component Parameter Value Tuning Range 

Graph Construction Temporal Window 
30 

days 
[7, 14, 30, 60] days 

Graph Construction 
Relationship 

Threshold 
0.15 [0.05, 0.1, 0.15, 0.2] 

Feature Extraction 
Embedding 

Dimension 
256 [64, 128, 256, 512] 

Feature Extraction GAT Attention Heads 8 [4, 8, 12, 16] 

Feature Extraction TCN Kernel Size 3 [2, 3, 5, 7] 

Detection 

Framework 
Learning Rate 0.001 

[0.0001, 0.0005, 0.001, 

0.005] 

Detection 

Framework 
Batch Size 128 [64, 128, 256, 512] 

Detection 

Framework 
Training Epochs 100 [50, 100, 150, 200] 

The model was implemented using PyTorch 1.9.0 and the Deep Graph Library (DGL) 0.7.1. All 

experiments were conducted on a server with an Intel Xeon E5-2680 v4 CPU, 256GB RAM, and 

four NVIDIA Tesla V100 GPUs. The model training utilized the Adam optimizer with a weight 

decay of 1e-5 and a learning rate decay factor of 0.5 every 20 epochs. 

Figure 4 illustrates the experimental workflow from data preprocessing to model evaluation. 

 
Figure 4: Experimental Workflow and Data Processing Pipeline 
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The figure presents a comprehensive workflow diagram with six main stages represented as 

connected blocks flowing from left to right. Stage 1 (data preprocessing) shows parallel paths for 

transaction, account, and external data processing, with data cleaning and normalization operations 

represented by filter-shaped icons. Stage 2 (graph construction) visualizes the multi-level graph 

formation process with nodes and edges gradually assembling into a hierarchical structure. Stage 

3 (feature extraction) displays the dual-stream architecture with structural and temporal pathways. 

Stage 4 (model training) includes loss curves and gradient flow visualizations. Stage 5 (validation) 

shows performance metrics with cross-validation folds. Stage 6 (testing) presents the final 

evaluation metrics with confidence intervals. Color coding is used consistently throughout the 

diagram to distinguish between different data types and processing stages. 

Performance Metrics and Comparison 

The evaluation employed multiple metrics to assess different aspects of fraud detection 

performance: Precision, Recall, F1-score, Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC), Area Under the Precision-Recall Curve (AUC-PR), and Average Precision (AP). 

The proposed Dynamic GNN model was compared against several baseline methods: (1) 

traditional machine learning models including Random Forest (RF), XGBoost (XGB), and 

LightGBM (LGBM); (2) deep learning approaches including Deep Neural Network (DNN) and 

Long Short-Term Memory (LSTM); (3) general graph-based methods including Graph 

Convolutional Network (GCN), Graph Attention Network (GAT), and GraphSAGE; and (4) 

specialized temporal graph neural networks including TGN, TGAT, and EvolveGCN[29]. 

Table 8 presents the comparative performance results across all three datasets, with the best values 

for each metric highlighted in bold. 
Table 8: Performance Comparison with Baseline Methods 

Metho

d 
CCFraud MPFraud BankNet 

 

A

UC-

ROC 

A

UC-PR 

F

1-score 

A

UC-

ROC 

A

UC-PR 

F

1-score 

A

UC-

ROC 

A

UC-PR 

F

1-score 

RF 
0.

892 

0.

427 

0.

452 

0.

875 

0.

384 

0.

412 

0.

856 

0.

318 

0.

334 

XGB 
0.

907 

0.

468 

0.

483 

0.

893 

0.

412 

0.

437 

0.

882 

0.

347 

0.

365 

LGBM 
0.

912 

0.

475 

0.

491 

0.

895 

0.

418 

0.

442 

0.

887 

0.

352 

0.

371 

DNN 
0.

908 

0.

462 

0.

478 

0.

889 

0.

401 

0.

425 

0.

878 

0.

342 

0.

358 
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LSTM 
0.

924 

0.

512 

0.

527 

0.

913 

0.

458 

0.

472 

0.

901 

0.

387 

0.

402 

GCN 
0.

935 

0.

548 

0.

563 

0.

926 

0.

497 

0.

513 

0.

915 

0.

428 

0.

447 

GAT 
0.

942 

0.

573 

0.

587 

0.

934 

0.

528 

0.

543 

0.

924 

0.

456 

0.

473 

GraphS

AGE 

0.

938 

0.

561 

0.

574 

0.

929 

0.

514 

0.

528 

0.

919 

0.

442 

0.

461 

TGN 
0.

956 

0.

612 

0.

628 

0.

948 

0.

571 

0.

586 

0.

940 

0.

502 

0.

518 

TGAT 
0.

958 

0.

617 

0.

632 

0.

952 

0.

578 

0.

593 

0.

943 

0.

512 

0.

527 

Evolve

GCN 

0.

953 

0.

603 

0.

618 

0.

945 

0.

564 

0.

579 

0.

936 

0.

496 

0.

512 

DGNN 

(Ours) 

0.

972 

0.

674 

0.

687 

0.

967 

0.

632 

0.

645 

0.

957 

0.

568 

0.

582 

The proposed DGNN model consistently outperformed all baseline methods across all datasets 

and metrics. Compared to the best-performing baseline (TGAT), DGNN achieved improvements 

of 1.4%, 5.7%, and 5.5% in AUC-ROC, AUC-PR, and F1-score, respectively, on the CCFraud 

dataset. Similar improvements were observed on the MPFraud and BankNet datasets[30]. 

Traditional machine learning methods demonstrated the weakest performance due to their inability 

to capture complex graph structures and temporal dependencies. Deep learning approaches 

performed better but still lagged behind graph-based methods. Among graph-based approaches, 

temporal graph neural networks consistently outperformed static graph models, highlighting the 

importance of temporal dynamics in financial fraud detection. 

Figure 5 presents the ROC and PR curves for different methods on the CCFraud dataset. 

 
Figure 5: ROC and PR Curves for Different Methods on CCFraud Dataset 
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The figure consists of two side-by-side plots showing model performance comparisons. The left 

plot displays Receiver Operating Characteristic (ROC) curves for various methods, with False 

Positive Rate on the x-axis and True Positive Rate on the y-axis. The right plot shows Precision-

Recall (PR) curves with Recall on the x-axis and Precision on the y-axis. Both plots use consistent 

color coding across methods: traditional methods (RF, XGB, LGBM) in shades of gray, deep 

learning approaches (DNN, LSTM) in shades of blue, static graph methods (GCN, GAT, 

GraphSAGE) in shades of green, temporal graph methods (TGN, TGAT, EvolveGCN) in shades 

of orange, and the proposed DGNN in red. The proposed model's curve consistently dominates 

other methods in both plots, with the performance gap being particularly pronounced in the PR 

curve. The figure includes a zoomed inset for both plots focusing on the high-performance region 

where models show the greatest differentiation. 

Ablation Studies and Parameter Sensitivity Analysis 

Comprehensive ablation studies were conducted to evaluate the contribution of each component 

in the proposed DGNN architecture. The following variants were tested: (1) DGNN-S: using only 

structural features without temporal information; (2) DGNN-T: using only temporal features 

without structural information; (3) DGNN-ST: using both structural and temporal features but 

without hierarchical message passing; (4) DGNN-MP: using multi-level message passing but with 

simplified feature extraction; and (5) DGNN-Full: the complete model with all components[31][32]. 

Table 9 presents the ablation study results on the CCFraud dataset. 
Table 9: Ablation Study Results on CCFraud Dataset 

Model Variant 
AUC-

ROC 

AUC-

PR 

F1-

score 
Precision Recall 

DGNN-S 0.943 0.587 0.602 0.625 0.581 

DGNN-T 0.951 0.602 0.617 0.638 0.597 

DGNN-ST 0.961 0.638 0.652 0.673 0.632 

DGNN-MP 0.958 0.624 0.639 0.657 0.622 

DGNN-Full 0.972 0.674 0.687 0.704 0.671 

Improvement +1.1% +3.6% +3.5% +3.1% +3.9% 

The ablation study results demonstrate that each component contributes significantly to the overall 

performance. Temporal features provided more discriminative power than structural features 

alone, while their combination in DGNN-ST yielded substantial improvements. The hierarchical 

message passing mechanism in DGNN-Full further enhanced performance by enabling 

information flow across different network levels[33]. 
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Parameter sensitivity analysis was conducted to evaluate the model's robustness to hyperparameter 

variations. The analysis focused on four critical parameters: embedding dimension, number of 

attention heads, temporal window size, and learning rate. Each parameter was varied while keeping 

others fixed at their optimal values. Table 10 presents the parameter sensitivity analysis results on 

the MPFraud dataset. 
Table 10: Parameter Sensitivity Analysis on MPFraud Dataset (F1-score) 

Embedd

ing 

Dimension 

F1-

score 

Attenti

on Heads 

F1-

score 

Wind

ow Size 

(days) 

F1-

score 

Learni

ng Rate 

F1-

score 

64 
0.6

12 
4 

0.6

28 
7 

0.6

09 
0.0001 

0.6

21 

128 
0.6

31 
8 

0.6

45 
14 

0.6

25 
0.0005 

0.6

38 

256 
0.6

45 
12 

0.6

37 
30 

0.6

45 
0.001 

0.6

45 

512 
0.6

42 
16 

0.6

29 
60 

0.6

32 
0.005 

0.6

28 

The parameter sensitivity analysis revealed that the model maintains robust performance across a 

range of hyperparameter values. The embedding dimension of 256 provided the optimal balance 

between representational capacity and computational efficiency. Eight attention heads yielded the 

best performance, with diminishing returns observed for higher values. A temporal window size 

of 30 days captured the most relevant historical patterns, while shorter windows missed important 

long-term dependencies and longer windows introduced noise[34][35]. The learning rate of 0.001 

achieved the fastest convergence without sacrificing performance. 

Figure 6 visualizes the parameter sensitivity analysis across all three datasets. 
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Figure 6: Parameter Sensitivity Analysis Across Datasets 

The figure displays a 4×3 grid of line plots showing how model performance (F1-score on y-axis) 

varies with different hyperparameter values (x-axis) across the three datasets. Each row 

corresponds to a different hyperparameter (embedding dimension, attention heads, window size, 

learning rate), while columns represent the three datasets (CCFraud, MPFraud, BankNet). Each 

plot contains a colored line for each dataset (blue for CCFraud, orange for MPFraud, green for 

BankNet) with markers at each tested parameter value. Error bars indicate the standard deviation 

from multiple runs. Shaded regions highlight the optimal parameter ranges. The plots reveal 

consistent patterns across datasets, with performance curves showing similar trends despite 

dataset-specific optimal values. A horizontal dashed line in each plot indicates the performance of 

the best baseline method for reference. 

Conclusion 

Research Findings Summary 

This paper introduced a Dynamic Graph Neural Network architecture for multi-level financial 

fraud detection that leverages both temporal and structural patterns in financial transaction 

networks. The proposed approach modeled financial activities as hierarchical graphs spanning 

transaction, account, and community levels, enabling detection of complex fraud patterns across 

multiple scales[36]. The temporal-structural feature extraction module successfully captured both 
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spatial relationships between financial entities and their temporal evolution, providing rich 

representations for fraud detection. Comprehensive experiments on three real-world financial 

datasets demonstrated the superior performance of our approach compared to existing methods. 

The proposed DGNN model achieved significant performance improvements over state-of-the-art 

methods, with average increases of 1.4%, 5.7%, and 5.5% in AUC-ROC, AUC-PR, and F1-score 

respectively across all datasets[37][38]. These improvements were most pronounced for complex 

fraud patterns involving multiple accounts and extending over longer time periods, validating the 

effectiveness of our multi-level approach. The ablation studies confirmed the importance of each 

component in the architecture, with the combination of temporal and structural features providing 

substantial performance gains over either feature type alone[39]. The hierarchical message-passing 

mechanism proved critical for detecting sophisticated fraud schemes that operate across different 

organizational levels of financial networks. 

The parameter sensitivity analysis revealed that the model maintains robust performance across 

various hyperparameter configurations, indicating stability in real-world deployment scenarios. 

The optimal embedding dimension of 256 balanced representational capacity and computational 

efficiency, while the temporal window size of 30 days captured relevant historical patterns without 

introducing excessive noise[40]. The comparative analysis against traditional machine learning 

methods, deep learning approaches, and graph-based techniques highlighted the limitations of 

models that fail to capture both structural relationships and temporal dynamics in financial data[41]. 

Limitations of the Current Approach 

Despite the promising results, the current approach exhibits several limitations that warrant further 

investigation. The computational complexity of the proposed model presents challenges for real-

time fraud detection in high-volume transaction environments. The multi-level graph construction 

and temporal-structural feature extraction processes require significant computational resources, 

potentially limiting deployment in resource-constrained settings. While the model demonstrated 

superior performance on the evaluated datasets, its generalizability to financial systems with 

significantly different transaction patterns or fraud strategies remains to be validated through more 

extensive cross-domain experiments. 

The current approach relies on fixed temporal window sizes for all nodes in the graph, which may 

not optimally capture fraud patterns that operate at varying time scales. Adaptive temporal 

windowing techniques could potentially improve detection performance by adjusting window 

sizes based on entity-specific transaction frequencies and patterns. The model's ability to detect 

previously unseen fraud techniques, known as zero-day attacks, requires additional investigation 

through more rigorous out-of-distribution testing. The existing evaluation methodology based on 

chronological data splitting may not fully reflect the model's performance in scenarios where fraud 

patterns evolve rapidly. 

The interpretability of the model's decisions presents another limitation, as the complex neural 

architecture makes it difficult to provide clear explanations for fraud predictions. While attention 

mechanisms offer some insight into feature importance, developing comprehensive explainability 
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methods for graph neural networks in the financial domain remains challenging. The current 

approach also faces challenges with extreme class imbalance in financial fraud data, where 

fraudulent transactions typically represent less than 0.1% of all transactions, potentially limiting 

detection performance for rare fraud types with minimal training examples[42]. 
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