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Abstract 

This paper presents a novel deep reinforcement learning approach for dynamic pricing in e-

commerce environments subject to supply chain disruption risks. Traditional pricing strategies 

often fail to adapt effectively to supply chain disruptions, resulting in suboptimal revenue, 

increased stockouts, and diminished market share. We formulate the dynamic pricing problem as 

a Markov Decision Process (MDP) with a state space incorporating both market conditions and 

supply chain status indicators. The proposed dual-stream neural network architecture processes 

pricing history and supply chain disruption signals simultaneously, enabling contextually 

appropriate pricing decisions that balance immediate revenue optimization with long-term 

resilience. Extensive experiments using a simulation environment with 237 SKUs across 6 product 

categories demonstrate that our DRL approach outperforms traditional pricing strategies by 4.9% 

in revenue and 5.1% in profit margin under normal market conditions. More significantly, during 

supply chain disruptions, the DRL model maintains 83.4% of normal operational performance 

compared to 61.7-72.3% for conventional approaches. Performance evaluation across multiple 

metrics shows that the proposed method effectively mitigates the negative impacts of various 

disruption scenarios, including transportation failures, supplier bankruptcies, and pandemic-

related restrictions, while maintaining computational efficiency suitable for real-time 

implementation. The research contributes to both theoretical understanding of resilient pricing 

mechanisms and practical applications for e-commerce businesses operating in volatile supply 

environments. 
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1. Introduction 

1.1. Background and Significance of Dynamic Pricing in E-commerce 

E-commerce has revolutionized the retail landscape, creating digital marketplaces where pricing 

strategies play a pivotal role in determining business success. Dynamic Prices The practice of 

adjusting real-time prices based on market conditions, demand fluctuations, competitor stocks, and 

stock levels have entered as a critical capacity for online retailers who seek to optimize revenue 

and maintain competitive advantage. Unlike traditional static price models, dynamic prices allow 

e -commerce platforms to quickly respond to changes in market conditions, maximizing profit 

margins, maintaining customer satisfaction.The significance of dynamic pricing in modern e-

commerce cannot be overstated. In today's digital marketplace, consumers have unprecedented 

access to price information and alternatives, making price a key determinant in purchase decisions. 

Kang et al[1]. Emphasize that pricing strategies directly impact not only revenue streams but also 

broader economic patterns, including cross-border capital flows that can affect national economic 

security. Their empirical analysis demonstrates how pricing anomalies can trigger irregular capital 

movements across markets, highlighting the macroeconomic implications of pricing decisions. 

The evolution of dynamic prices was accelerated by advances in data analysis and artificial 

intelligence. Modern price systems can process vast amounts of data to identify ideal prices that 

balance profit maximization with the growth of market share. As observed by Liang et al[2]. These 

systems must navigate complex customer sentiment landscapes, as pricing decisions can trigger 

subtle emotional responses that affect brand perception and loyalty. Their research on cross-lingual 

detection of sentiment manipulation provides insights into how pricing strategies must account for 

diverse customer reactions across different markets and cultures. 

Financial institutions and e -commerce platforms are increasingly dependent on sophisticated 

algorithms to determine great price strategies. Wang and Liang [3]. Highlight the importance of 

interpretable models in this context, noting that price decisions should not only be profitable, but 

also explainable for stakeholders and regulatory stakeholders. Its comparative analysis of 

interpretability techniques offers valuable structures to ensure that dynamic price algorithms 

remain transparent as they deal with complex market signs. 

The meaning of dynamic prices extends beyond the immediate considerations of revenue to cover 

regulatory compliance and risk management. Dong and Zhang [4]. Emphasize that price strategies 

in global e-commerce should navigate multi-judicial challenges, especially when they affect the 

transfronty payment systems. Its AI -oriented structure for compliance risk assessment highlights 

the need for price systems that can adapt to varied regulatory environments, maintaining 

operational efficiency. 



Annal. App. Sci, 2024   

3 

1.2. Supply Chain Disruption Risk in the Modern E-commerce Ecosystem 

Modern e-commerce operations rest upon intricate global supply chains that, while efficient under 

stable conditions, have proven increasingly vulnerable to disruptions. Supply chain disruptions—

ranging from natural disasters and pandemics to political instabilities and transportation failures—

have emerged as a critical risk factor affecting e-commerce pricing strategies. The COVID-19 

pandemic vividly demonstrated how supply chain vulnerabilities can dramatically impact product 

availability, delivery times, and, consequently, pricing decisions. 

The interconnected nature of global supply chains means that disruptions rarely remain localized. 

Instead, they propagate through the network in what researchers term the "ripple effect," whereby 

a disruption at one point cascades through the entire supply chain, affecting multiple stakeholders 

and processes. Wang et al[5]. Utilize LSTM-based prediction models to analyze dynamic patterns 

in complex systems, an approach that has parallels in tracking how supply chain disruptions 

propagate through e-commerce networks. Their research demonstrates how neural network 

architectures can capture temporal dependencies in interconnected systems, providing a foundation 

for understanding disruption propagation in supply chains. 

Supply chain disruptions directly impact pricing strategies through multiple mechanisms. First, 

disruptions often lead to inventory shortages, which can necessitate price adjustments to balance 

supply and demand. Second, disruptions frequently increase operational costs, including expedited 

shipping, alternative sourcing, and inventory holding costs, which may need to be reflected in 

product pricing. Third, disruptions create uncertainty about future product availability, 

complicating pricing decisions that typically rely on predictable supply forecasts. 

The modern e-commerce ecosystem is particularly susceptible to supply chain disruptions due to 

its emphasis on efficiency over redundancy. Just-in-time inventory management, lean supply 

chains, and global sourcing strategies have reduced costs but increased vulnerability to disruptions. 

Ma et al[6]. Highlight the importance of feature selection optimization in predictive models, a 

concept directly applicable to identifying early warning signals of supply chain disruptions. Their 

machine learning approach demonstrates how carefully selected indicators can improve prediction 

accuracy, providing e-commerce platforms with valuable lead time to adjust pricing strategies in 

anticipation of supply chain disruptions. 

Anomaly detection plays an important role in identifying the potential for supply chain disorders 

before they fully affect e-commerce operations. Li et al[7]. Propose an approach to increase the 

efficiency of detection through an estimated sample difficulty, a method that can improve the early 

warning system for supply chain disorders. Their work shows how to prioritize anomalies that are 

difficult to classify can significantly increase the accuracy of detection, allowing e-commerce 

platforms to apply preemptive price adjustments before interference increases. 

Financial market volatility often signals or coincides with supply chain disruptions, creating 

additional challenges for e-commerce pricing strategies. Yu et al[8]. present a real-time detection 

system for anomalous trading patterns using Generative Adversarial Networks (GANs), providing 

insights into how similar approaches could monitor supply chain health indicators. Its gan -based 

approach allows the detection of subtle anomalies that can escape traditional statistical methods, 
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offering possible applications in identifying early signs of supply chain interruptions that would 

require price adjustments. 

The risks associated with supply chain disruptions extend beyond operational concerns to financial 

vulnerabilities. Xiao et al[9]. focus on anomalous payment behavior detection for small and 

medium enterprises (SMEs), highlighting how financial instabilities can signal or result from 

supply chain disruptions. Their LSTM-Attention mechanism demonstrates how temporal patterns 

in payment behaviors can reveal underlying supply chain strains, providing e-commerce platforms 

with additional indicators to inform pricing strategies during periods of disruption risk. 

2. Literature Review 

2.1. Traditional Approaches to Dynamic Pricing in E-commerce 

Traditional dynamic pricing approaches in e-commerce have evolved from simple rule-based 

systems to more sophisticated statistical and machine learning methods. These approaches 

typically rely on historical sales data, competitor pricing information, and inventory levels to adjust 

prices. Many conventional systems operate on predefined rules that trigger price changes when 

specific conditions are met, such as inventory thresholds or competitor price movements. Xiao et 

al[10]. address data privacy concerns in algorithmic systems, which has direct implications for 

pricing algorithms that process sensitive market data. Their differential privacy mechanism offers 

insights into how pricing systems can balance data utilization with privacy protection, a growing 

concern as pricing algorithms incorporate more customer-specific information. 

Mathematical optimization techniques form another category of traditional pricing methods, 

including linear programming and mixed-integer programming approaches that seek to maximize 

revenue or profit subject to inventory constraints. These methods provide optimal solutions under 

specific assumptions but often struggle to adapt to rapidly changing market conditions. Zhang et 

al[11]. discuss privacy-preserving feature extraction techniques that enable secure computation 

without exposing sensitive data, which is particularly relevant for collaborative pricing systems 

where multiple entities may share market intelligence without compromising proprietary 

information. 

Time series forecasting approaches have been widely employed in e-commerce pricing, using 

methods such as ARIMA (Autoregressive Integrated Moving Average), exponential smoothing, 

and regression models to predict demand at different price points. Ren et al[12]. Present advanced 

detection algorithms using graph convolutional neural networks that could be applied to identify 

patterns in market data for improved pricing decisions. Their work demonstrates how network-

based approaches can uncover complex relationships in structured data, offering potential 

improvements over traditional univariate time series methods. 
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2.2. Supply Chain Resilience Strategies and Their Limitations 

Supply chain resilience strategies encompass proactive and reactive measures designed to maintain 

operational continuity during disruptions. Common proactive strategies include supplier 

diversification, strategic inventory buffers, and flexible production capabilities. Ji et al[13]. 

Introduced an attitude-adaptation negotiation strategy for electronic markets that incorporates 

adaptive behaviors based on market conditions. Their work demonstrates how negotiation 

mechanisms can enhance supply chain flexibility, though their approach predates many modern 

challenges in global supply networks. 

Reactive resilience strategies focus on rapid response and recovery after disruptions occur, 

including contingency routing, prioritization schemes, and dynamic resource reallocation. These 

approaches aim to minimize the impact of disruptions on customer service levels and operational 

costs. Xiao et al[14]. Address risk assessment methodologies that parallel supply chain vulnerability 

analyses, offering frameworks for identifying critical points of failure in complex systems. Their 

protection strategies against data leakage risks provide models for developing comprehensive 

defense mechanisms against supply chain disruptions. 

The limitations of current resilience strategies become apparent during severe or prolonged 

disruptions. Most approaches assume limited disruption duration and scope, failing to address 

cascading failures across global supply networks. Traditional methods often trade efficiency for 

resilience, increasing operational costs during normal conditions. Liu et al[15]. Present an adaptive 

transmission strategy for resource-constrained environments that demonstrates the value of 

dynamic resource allocation in uncertain conditions. Their approach to optimizing data 

transmission in vehicular networks offers parallels to adaptive inventory allocation in disrupted 

supply chains. 

2.3. Applications of Deep Reinforcement Learning in Pricing Optimization 

Deep Reinforcement Learning (DRL) represents a paradigm shift in pricing optimization by 

enabling systems to learn optimal strategies through continuous interaction with the market 

environment. DRL combines deep neural networks with reinforcement learning principles to 

handle high-dimensional state spaces and complex market dynamics. Michael et al[16]. 

Demonstrate the effectiveness of meta-learning approaches for transferring knowledge across 

related domains. Their work on automatic grading systems shows how models can leverage 

experience from similar tasks to improve performance on new challenges, a capability directly 

applicable to pricing systems that must adapt to changing market conditions. 
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3. Methodology 

3.1. Problem Formulation and Markov Decision Process 

The dynamic pricing problem under supply chain disruption risk is formulated as a Markov 

Decision Process (MDP), providing a mathematical framework for sequential decision-making 

under uncertainty. The MDP is defined by a tuple (S, A, P, R, γ), where S represents the state 

space, A denotes the action space, P indicates the state transition probability function, R is the 

reward function, and γ ∈ [0,1] is the discount factor for future rewards. 

The state space S incorporates multiple dimensions of information relevant to pricing decisions 

and supply chain status. McNichols et al[17]. Developed classification systems for error patterns 

using large language models, which parallels our approach to categorizing different types of supply 

chain disruptions within the state space. Their work demonstrates how complex categorical data 

can be effectively encoded and processed by neural network architectures, a crucial capability for 

our state representation. Table 1 outlines the state variables included in our MDP formulation. 
Table 1: State Space Variables in the MDP Formulation 

Variable 

Category 
Description Dimension Data Type 

Inventory Level 
Current stock quantity 

for each product 
n_products Continuous 

Demand 

Forecast 

Predicted demand for 

next k periods 
n_products × k Continuous 

Price History 
Previous m pricing 

decisions 
n_products × m Continuous 

Supply Chain 

Status 

Binary indicators of 

disruption by type 
n_disruption_types Binary 

Competitor 

Pricing 

Current prices of top 

competitors 

n_competitors × 

n_products 
Continuous 

Seasonality 
Temporal factors 

affecting demand 
4 Continuous 

Supply Chain 

Lead Time 

Expected delivery 

times 
n_suppliers Continuous 

Risk Indicators 
Probability of future 

disruptions 
n_risk_types Continuous 
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The action space A consists of discrete price adjustments for each product in the e-commerce 

platform's inventory. Zhang et al[18]. Propose methodologies for modeling complex preference 

structures, which informs our approach to incorporating varying customer price sensitivities into 

the action space definition. Their work on scorer preferences provides insights into how different 

stakeholder objectives can be balanced within a single decision framework. Table 2 defines the 

structured action space employed in our model. 
Table 2: Action Space Definition for the Dynamic Pricing Model 

Action Type Description Range Granularity 

Price Increase 
Percentage increase from base 

price 
[0%, +25%] 

1% 

increments 

Price Decrease 
Percentage decrease from base 

price 
[0%, -25%] 

1% 

increments 

Flash Sale Limited-time deep discount 
[-30%, -

50%] 

5% 

increments 

Bundle Pricing 
Combined product offering 

discount 

[-10%, -

20%] 

2% 

increments 

Premium 

Pricing 

Markup for guaranteed 

availability 

[+10%, 

+30%] 

5% 

increments 

The reward function R(s,a) is designed to balance immediate revenue optimization with long-

term supply chain stability. Zhang et al[19]. introduce step-by-step planning approaches for 

complex problem solving, which inspires our multi-component reward formulation that accounts 

for both immediate pricing decisions and their future implications. Their interpretable solution 

generation methodology offers a blueprint for creating reward functions that provide clear learning 

signals while maintaining business interpretability. Table 3 presents the components of our reward 

function. 
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Figure 1: MDP Framework for Dynamic E-commerce Pricing Under Supply Chain Disruption 

The MDP framework depicted in Figure 1 illustrates the interconnections between the environment 

state, agent actions, and reward mechanisms. The diagram shows state transitions through time 

steps t to t+n, with pricing decisions influencing both immediate rewards and future state 

distributions through their impact on inventory levels, customer demand, and supply chain status. 

Figure 1 uses a color-coded flow diagram with blue nodes representing states, green nodes 

representing actions, and red nodes representing rewards. The connections between nodes show 

probability distributions for transitions, with thicker lines indicating higher probability paths. The 

diagram also includes decision boundaries for different pricing strategies based on supply chain 

disruption severity, visualized as gradient-colored regions in a 3D state space projection. 

3.2. Deep Reinforcement Learning Framework for Dynamic Pricing 

The proposed deep reinforcement learning framework leverages recent advances in neural network 

architectures and reinforcement learning algorithms to learn optimal pricing policies under supply 

chain uncertainty. Zhang et al[20]. Present a meta-learning approach for automatic grading that 

demonstrates how transfer learning can be applied to complex decision problems. Their methods 

for knowledge transfer across related tasks inspire our pre-training strategy for the DRL agent, 

enabling faster adaptation to new product categories and market conditions. 
Table 3: Reward Function Components 

Component Description Weight 
Mathematical 

Formulation 

Revenue Immediate sales revenue 0.45 R₁ = p_t × q_t 

Profit Margin Margin over cost 0.25 
R₂ = (p_t - c_t) × q_t / 

p_t 
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Inventory 

Stability 

Penalty for stockouts or 

overstock 
0.15 

R₃ = -\|I_t - I_optimal\| / 

I_capacity 

Price Stability 
Penalty for large price 

fluctuations 
0.05 

R₄ = -\|p_t - p_{t-1}\| / 

p_{t-1} 

Customer 

Satisfaction 

Estimated impact on 

customer loyalty 
0.10 

R₅ = f(p_t, q_t, 

review_t) 

Our DRL architecture consists of a dual-stream neural network with separate pathways for 

processing pricing history and supply chain status information, which are then merged to produce 

Q-values for each possible pricing action. Wang et al[21]. Developed tree embedding techniques 

for scientific formula retrieval, which informs our approach to embedding hierarchical supply 

chain structures within the neural network. Their methodology for preserving structural 

relationships while enabling efficient computation provides valuable insights for representing 

complex supply networks in our model. Table 4 details the network architecture implemented in 

our framework. 
Table 4: Network Architecture of the DRL Model 

Layer Type Input Dimension 
Output 

Dimension 
Activation 

Price 

History Stream 
LSTM 

[batch_size, 

seq_length, 

n_price_features] 

[batch_size, 

128] 
tanh 

Supply 

Chain Stream 
GCN 

[batch_size, 

n_nodes, 

n_supply_features] 

[batch_size, 

128] 
ReLU 

Fusion 

Layer 
Dense [batch_size, 256] 

[batch_size, 

128] 
ReLU 

Advantage 

Stream 
Dense [batch_size, 128] 

[batch_size, 

n_actions] 
Linear 

Value 

Stream 
Dense [batch_size, 128] 

[batch_size, 

1] 
Linear 

Output 

Layer 
Custom 

[batch_size, 

n_actions+1] 

[batch_size, 

n_actions] 
- 
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Figure 2: Deep Reinforcement Learning Architecture for Dynamic Pricing 

Figure 2 presents a comprehensive visualization of the DRL architecture, highlighting the data 

flow from input states through the neural network components to pricing actions and subsequent 

environmental feedback. 

The diagram uses a multi-layered neural network representation with custom node shapes for 

different network components (hexagons for LSTM cells, circles for GCN nodes, squares for dense 

layers). The architecture includes skip connections shown as curved arrows bypassing certain 

layers, attention mechanisms visualized as heat maps connecting different network sections, and 

gradient flow paths indicated by color intensity. The figure also includes smaller inset charts 

showing the learning curves during training and Q-value distributions for different pricing actions 

under varying supply chain conditions. 

4. Experimental Results and Analysis 

4.1. Simulation Environment and Performance Metrics 

The proposed deep reinforcement learning approach for dynamic pricing under supply chain 

disruption risk was evaluated in a comprehensive simulation environment designed to replicate 

real-world e-commerce scenarios. Zhang et al[22]. Developed embedding techniques for analyzing 

mathematical operations, which informs our approach to representing price elasticity relationships 

in the simulation environment. Their work on mathematical operation embeddings provided a 

foundation for capturing complex interdependencies between pricing decisions and market 

responses in our experimental setup. Table 5 details the key parameters of the simulation 

environment. 
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Table 5: Simulation Environment Parameters 

Parameter 

Category 
Description Value/Range 

Time Horizon Simulation duration 365 days 

Product 

Categories 

Number of distinct 

product types 
6 

SKUs 
Total stock keeping 

units 
237 

Demand Model 
Base demand model 

type 
Poisson + seasonal components 

Price Elasticity 
Sensitivity of demand to 

price 
-0.8 to -2.3 

Competitor 

Agents 

Number of competing 

sellers 
4 

Inventory 

Capacity 

Maximum inventory 

holdings 
5000 units per SKU 

Lead Time 
Standard supply chain 

lead time 
7-21 days 

Disruption 

Types 

Categories of supply 

chain disruptions 

5 (transportation, supplier failure, natural 

disaster, political, pandemic) 

Disruption 

Probability 

Likelihood of disruption 

occurrence 
0.03-0.15 per type per month 

The performance of the pricing strategies was evaluated using multiple metrics capturing both 

financial outcomes and operational resilience. Jordan et al[23]. Established methodologies for 

rigorously evaluating reinforcement learning algorithms, which we adapt to our specific domain. 

Their approach to performance evaluation provides a structured framework for assessing how 

different algorithms perform across varying environmental conditions. Table 6 presents the 

performance metrics used in our evaluation. 
Table 6: Performance Metrics for Dynamic Pricing Evaluation 

Metric Description 
Mathematical 

Formulation 

Optimization 

Goal 
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Revenue Total sales revenue ∑ p_t × q_t Maximize 

Profit 

Margin 

Percentage profit over 

cost 

∑(p_t - c_t) × q_t / 

∑(p_t × q_t) 
Maximize 

Stockout 

Rate 

Frequency of 

inventory depletion 
∑(I_t == 0) / T Minimize 

Price 

Stability 

Variance in pricing 

over time 
Var(p_1, p_2, ..., p_T) Minimize 

Recovery 

Time 

Days to return to 

normal operations after 

disruption 

min{t : perf_t ≥ 0.9 × 

perf_pre-disruption} 
Minimize 

Customer 

Satisfaction 

Composite metric of 

reviews and repurchase rate 

f(reviews, 

repeat_purchases) 
Maximize 

Market 

Share 

Percentage of total 

market sales 
q_agent / q_total Maximize 

Resilience 

Score 

Composite metric of 

performance during 

disruptions 

f(recovery_time, 

min_performance) 
Maximize 

 

 
Figure 3: Learning Convergence Across Different Training Regimes 
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Figure 3 illustrates the learning convergence of the DRL agent under different training regimes, 

comparing performance improvements over training iterations for various hyperparameter 

configurations. 

The figure presents a multi-panel visualization with four subplots. The top-left panel shows reward 

curves for five different learning rate schedules (ranging from 1e-4 to 1e-2) across 100,000 training 

iterations, with performance plateauing at different levels. The top-right panel displays a 3D 

surface plot of performance as a function of batch size and network width, with a clear optimal 

region visible in the center-right portion. The bottom-left panel shows training stability through 

gradient norm distributions for different optimizer configurations, represented as violin plots with 

median and quartile markers. The bottom-right panel presents a comparative analysis of transfer 

learning effectiveness, showing how pre-training on historical data accelerates convergence 

compared to training from scratch. 

4.2. Comparative Analysis with Traditional Pricing Strategies 

The performance of our DRL-based dynamic pricing approach was benchmarked against 

traditional pricing strategies across various market conditions and supply chain scenarios. Qi et 

al[24][31][32]. Present methods for anomaly explanation using metadata, which parallels our approach 

to interpreting and responding to supply chain disruptions[33]. Their techniques for contextualizing 

anomalous events with metadata information inform our interpretation of performance differences 

between pricing strategies during disruption periods. Table 7 summarizes the comparative 

performance of different pricing strategies under normal market conditions. 
Table 7: Comparison of Different Pricing Strategies Under Normal Market Conditions 

Pricing 

Strategy 

Reven

ue ($M) 

Pro

fit 

Margin 

(%) 

Stock

out Rate 

(%) 

Pri

ce 

Stability 

Mar

ket Share 

(%) 

Computati

onal Time (ms) 

Fixed 

Pricing 
8.73 

22.

4 
5.7 

0.0

0 
18.2 0.01 

Time-

based Pricing 
9.14 

23.

7 
6.2 

0.1

2 
19.5 0.05 

Competit

or-based 
9.87 

24.

9 
4.8 

0.2

8 
21.3 0.32 

Inventor

y-based 
10.21 

25.

3 
3.1 

0.3

7 
22.7 0.18 

ML 

Regression 
10.56 

26.

8 
2.8 

0.2

5 
23.4 15.62 
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LSTM 

Forecasting 
10.89 

27.

2 
2.3 

0.1

9 
24.0 28.91 

DRL 

(Ours) 
11.43 

28.

6 
1.9 

0.2

2 
25.7 31.45 

The results demonstrate that the DRL-based approach achieves superior performance across most 

metrics under normal market conditions, with a 4.9% improvement in revenue and a 5.1% 

improvement in profit margin compared to the next best approach (LSTM Forecasting)[34][35]. The 

DRL strategy also maintains the lowest stockout rate while preserving reasonable price stability, 

indicating its ability to balance multiple competing objectives. Zhang et al[25][36]. Developed 

innovative algorithms for learning to perform exception-tolerant abduction, which informs our 

DRL agent's capability to handle unexpected market conditions. Their approach to managing 

exceptions provides insights into how reinforcement learning systems can maintain performance 

in the presence of anomalous inputs, a critical capability for pricing systems operating in volatile 

markets[37]. 

 

 
Figure 4: Performance Comparison Between DRL and Traditional Strategies 

Figure 4 provides a detailed visual comparison of performance metrics between the DRL approach 

and traditional pricing strategies across different evaluation dimensions. 

The figure presents a complex multi-dimensional comparison using a combination of radar charts 

and time series plots. The central radar chart compares seven performance metrics (revenue, profit, 

stock availability, price stability, market share, computational efficiency, and customer 

satisfaction) across all seven pricing strategies, with the DRL approach forming a larger polygon 

that encompasses most competitor strategies. Surrounding this central visualization are four time 

series plots showing daily revenue, profit margin, inventory levels, and price adjustments over a 

three-month period. Each plot includes lines for the top three performing strategies (DRL, LSTM 
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Forecasting, and ML Regression), with highlighted regions indicating periods of increased market 

volatility. A small heat map in the corner displays pairwise statistical significance tests between 

all strategy combinations, with cell colors indicating p-values and asterisks marking significant 

differences. 

5. Conclusions and Future Directions 

5.1. Key Findings and Contributions 

This research has demonstrated the effectiveness of deep reinforcement learning for dynamic 

pricing in e-commerce environments confronted with supply chain disruption risks. The proposed 

DRL framework achieved consistent performance improvements across multiple metrics 

compared to traditional pricing strategies[26][38]. Revenue increased by 4.9% and profit margins 

improved by 5.1% relative to the best conventional approach. The most significant performance 

gains manifested during supply chain disruption periods, where the DRL model maintained 83.4% 

of normal operational performance compared to 61.7% for competitor-based strategies and 72.3% 

for inventory-based approaches[39][40]. 

The integration of supply chain disruption signals into the state representation enabled the DRL 

agent to detect and respond to emerging risks before they fully impacted inventory availability. 

The dual-stream neural network architecture effectively processed both historical pricing data and 

supply chain status information, allowing for contextually appropriate pricing decisions that 

balanced immediate revenue optimization with long-term supply chain stability[41][42]. The multi-

component reward function successfully guided the learning process toward pricing policies that 

maintained resilience while maximizing financial performance. 

5.2. Practical Implications for E-commerce Businesses 

E-commerce businesses can implement the proposed framework to enhance pricing resilience 

against supply chain disruptions of varying severity and duration[27]. The DRL approach offers 

particular value to retailers operating in volatile markets with complex supply networks, where 

traditional pricing strategies struggle to adapt quickly enough to changing conditions[28]. 

Implementation requires investment in data infrastructure to collect and process supply chain 

status signals in near real-time, which can be leveraged for other operational improvements beyond 

pricing optimization[43]. 

The computational requirements of the DRL approach remain manageable for modern e-commerce 

platforms, with inference times averaging 31.45 milliseconds per pricing decision. This enables 

real-time price adjustments across thousands of SKUs without introducing significant latency to 

customer-facing systems[44]. Businesses adopting this approach should anticipate a learning period 

during which the DRL agent calibrates to specific market dynamics and supply chain 

characteristics, with performance improvements accelerating as more data becomes available[45]. 
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5.3. Research Limitations and Future Research Opportunities 

The current research has several limitations that present opportunities for future investigation. The 

simulation environment, while comprehensive, cannot fully capture all complexities of real-world 

e-commerce ecosystems, particularly those related to competitor behavior and consumer 

psychology[29]. The DRL model performance was evaluated over a one-year period, which may 

not reflect long-term market dynamics or rare but severe disruption events with extended recovery 

periods. 

Future research should explore the integration of additional data sources into the state 

representation, including social media signals, macroeconomic indicators, and supplier financial 

health metrics[30]. The extension of the framework to incorporate multi-agent reinforcement 

learning could enable more sophisticated modeling of competitive dynamics and strategic 

interactions between market participants. Investigating the applicability of the approach to 

different retail sectors with varying supply chain characteristics would establish boundary 

conditions for the methodology. 

Another promising direction involves the development of interpretable DRL models that provide 

transparent explanations for pricing recommendations, addressing the "black box" nature of 

current approaches. Explainable AI techniques could help build trust in algorithmic pricing 

systems and facilitate human oversight of automated pricing decisions, particularly during critical 

disruption periods when stakes are highest. 
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Effectiveness and Engagement Metrics" [2]. Their comprehensive analysis and AI-driven 

approaches have significantly enhanced my knowledge of dynamic content delivery systems and 

inspired my research in this field. 
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